Stability of an AQCQ functional equation in non-Archimedean (n, β)-normed spaces
نویسندگان
چکیده
منابع مشابه
AQCQ-Functional Equation in Non-Archimedean Normed Spaces
and Applied Analysis 3 Theorem 1.2 Rassias 18 . Let X be a real normed linear space and Y a real complete normed linear space. Assume that f : X → Y is an approximately additive mapping for which there exist constants θ ≥ 0 and p, q ∈ R such that r p q / 1 and f satisfies the inequality ∥ ∥f ( x y ) − f x − f(y)∥∥ ≤ θ‖x‖p∥∥y∥∥q 1.5 for all x, y ∈ X. Then there exists a unique additive mapping L...
متن کاملFixed Points and the Stability of an AQCQ-Functional Equation in Non-Archimedean Normed Spaces
and Applied Analysis 3 is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof 7 for mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa 8 noticed that the theorem of Skof is still...
متن کاملStability of Fréchet functional equation in non - Archimedean normed spaces ∗
We will establish stability of Fréchet functional equation
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملGeneralized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces
In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2019
ISSN: 2391-4661
DOI: 10.1515/dema-2019-0009